
Figure 1: Plot showing the velocities found 
for the Ca II 8542 Å line spectra inside a 
sunspot's umbra at a particular time. Their 
classifications are shown in Figure 2.
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Determining accurate plasma velocities from spectroscopic 
measurements is a challenging endeavour, especially when considering 
weak chromospheric absorption lines are often rapidly evolving and 
contain multiple plasma profiles in their composition. Here, Mr 
MacBride presents a novel method that employs machine learning to 
identify the underlying components present within an observed spectral 
line, before constraining the constituent profiles through Gaussian 
and/or Voigt fits, alongside minimisation tests to validate the reliability 
of the results. With this method, automatic adjustments can be made 
to the models fitted such that active and quiescent components present 
in each particular spectrum can be identified accurately. Lastly, Mr 
MacBride utilises a Ca II 8542 Å spectral imaging dataset of a sunspot 
as a proof-of-concept study to show the potential of his team's method 
for reliably extracting two-component atmospheric profiles that are 
commonly present in dynamic sunspot umbral chromospheres.

Abstract

Introduction
Having accurate velocity information for plasma in the solar atmosphere 
is important for studying the properties of waves present within. Using 
spectroscopic measurements of the Sun, velocities can be found by 
calculating the Doppler shift of a particular absorption line core[1].

Different spectral lines are formed across different atmospheric heights, 
therefore, by choosing a particular line, waves at a particular 
atmospheric height can be studied[1,2]. Some spectral lines, including 
Ca II 8542 Å, include an active emission component as well as the 
quiescent absorption component. Separate absorption and emission 
profiles must be fitted to each spectrum. The fitted profiles are then 
used to find the Doppler velocities of the quiescent/active atmospheric 
components.
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Method
find stationary_wavelength

apply corrections to Spectra

find & subtract background from Spectra

train & test NeuralNetwork

classify Spectra using NeuralNetwork

foreach Spectrum in Spectra:

if class is 0:

fit AbsorptionVoigt to Spectrum (peak & slopes)

if class is 1:

fit AbsorptionVoigt to Spectrum (slopes)

if class is 2, 3 or 4:

fit AbsorptionVoigt + EmissionVoigt to Spectrum (slopes)

find velocity using fitted_line_core & stationary_wavelength

save velocity & fitted_parameters to file

Determine the stationary wavelength from the 
average spectrum of a quiescent region.

A constant background is subtracted from each spectrum, calculated from the 
average value of the spectrum’s wings over ±20 timesteps to filter noise out.

Manually classify 200 sample spectra (100 for training, 
100 for testing) into classes shown in Figure 2.

Fitting noisy peak detail is less important than fitting the slopes, therefore, 
wavelengths around the stationary line core are now given larger errors.

Using the line cores of the fitted absorption profiles and the stationary 
wavelength, the Doppler velocities are calculated. (Figure 2 and Figure 3)

Fit an absorption Voigt (Eq. 1) profile[3] to each spectrum of class 0 or 1 . 
Error bars are created to lower the priority of fitting the noisy wings. (Fig. 5)

Both an absorption Voigt profile and an emission Voigt profile will be 
fitted to each spectrum of class 2 , 3 or 4 . (Figure 4)
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Preliminary profile fitting 
methods struggled to accurately 
fit a profile across every region 
of a sunspot's umbra. This was 
due to the spectra having a 
variety of different profiles due 
to the active component that 
was often present among the 
quiescent component.

Even if emission was not present 
in a particular spectrum, the fit 
would still "improve" if the 
algorithm fitted a significant 
non-zero emission profile as it 
could filter out some noise in the 
absorption profile.

Machine Learning
Using machine learning, spectra can be accurately classified into discrete 
categories based on the ratio of their active component to their 
quiescent component. This allows the fitting method to be tailored to the 
physics that is present in each spectrum.

Figure 2: Plots of stacked Ca II 8542 Å line spectra grouped by 
their neural network classification. Bottom right: Map showing 
how the neural network classified the Ca II 8542 Å line spectra 
present within a sunspot's umbra at a particular time.

Scan for a video of Figure 1 
throughout time, more details 
and instructions on how to use 
this software yourself, or visit:

macbride.me/specfit

Figure 5: Example fit of a 
spectrum of class 0 . Sigma profile 
represented by shaded areas.

Figure 4: Example fit of a spectrum of class 4 . Sigma profile 
represented by shaded areas. Left: Combined profile. Right:
Absorption profile and emission profile plotted separately.

Equation 1: Voigt profile[3] with 
Gaussian   and Lorentzian      
centered at origin.
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Figure 3: A time-distance diagram of the quiescent umbral Doppler velocities (right panel), 
extracted from a one-dimensional slice taken through the middle of the sunspot umbra 
(solid red line; left panel). The solid yellow line in the left hand panel represents the umbra-
penumbra boundary used to isolate the umbral regions.


